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Abstract

The linear multifrequency-grey acceleration (LMFGA) technique is used to accelerate the iterative convergence of mul-
tigroup thermal radiation diffusion calculations in high energy density simulations. Although it is effective and efficient in
one-dimensional calculations, the LMFGA method has recently been observed to significantly degrade under certain con-
ditions in multidimensional calculations with large discontinuities in material properties. To address this deficiency, we
recast the LMFGA method in terms of a preconditioned system that is solved with a Krylov method (LMFGK). Results
are presented demonstrating that the new LMFGK method always requires fewer iterations than the original LMFGA
method. The reduction in iteration count increases with both the size of the time step and the inhomogeneity of the prob-
lem. However, for reasons later explained, the LMFGK method can cost more per iteration than the LMFGA method,
resulting in lower but comparable efficiency in problems with small time steps and weak inhomogeneities. In problems with
large time steps and strong inhomogeneities, the LMFGK method is significantly more efficient than the LMFGA method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The linear multifrequency-grey acceleration (LMFGA) technique has proven to be very effective for
improving the iterative convergence of multigroup thermal radiation diffusion calculations in high energy den-
sity simulations [1]. Although it appears to be unconditionally effective in one-dimensional problems, the
method has recently been observed by one of the authors (B. Yang) and others at Lawrence Livermore
National Laboratory to significantly degrade in multidimensional problems with large discontinuities in mate-
rial properties. A similar deficiency has been observed for the diffusion-synthetic acceleration (DSA) scheme
associated with the transport equation [2]. Using the DSA method as a preconditioner for Krylov iterations
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addresses this deficiency, restoring the effectiveness and efficiency of the method [3]. The purpose of this paper
is to recast the LMFGA method for preconditioned Krylov iterations, i.e., to recast it as a preconditioned
system solved with a standard Krylov method. This is done with the intent of obtaining an iterative solution
technique for solving the multigroup thermal radiation diffusion equations that is effective and efficient under
all conditions. We refer to our solution method as the linear multifrequency-grey Krylov (LMFGK) tech-
nique. Our computational testing indicates that the LMFGK method always requires fewer iterations than
the original LMFGA method. The reduction in iteration count increases with both the size of the time step
and the inhomogeneity of the problem. However, for reasons later explained, the LMFGK method can cost
more per iteration than the LMFGK method, resulting in lower but comparable efficiency in problems with
small time steps and weak inhomogeneities. In problems with large time steps and strong inhomogeneities, the
LMFGK method is significantly more efficient than the LMFGA method.

The remainder of this paper is organized as follows. In Section 2 we give a brief description of the use of
Krylov methods. In Section 3 we describe the equations of thermal radiation diffusion. In Section 4 we present
an overview of the LMFGA technique. In Section 5 we show how to recast the LMFGA technique as a pre-
conditioned Krylov method for solving the multigroup thermal radiation diffusion equations (LMFGK). In
Section 6 we show a simple relationship between the LMFGA and LMFGK techniques. In Section 7 we
describe our discrete equations. Computational results are presented in Section 8 comparing the performance
of the LMFGK method with that of the original LMFGA method. Finally, in Section 9, we give conclusions
and recommendations for future work.

2. Krylov methods

It is sufficient for our purposes to briefly describe how a Krylov iteration is used in an implementation. A
theoretical description of Krylov methods is given in Ref. [4]. Suppose we wish to solve a linear system of the
form
M~x ¼~b; ð1Þ

for the solution~x with a Krylov iterative method software package. The user supplies the right hand side and
an initial guess. At each Krylov iteration, the package supplies a vector~z and the user returns a vector ~w ¼M~z
to the package. This is referred to as the action of the operator M on~z because the operator need not be explic-
itly constructed to generate ~w (which is the case in our application). Most Krylov methods require the action
of M only once per iteration, CG and GMRES for example, but some may require the action more than once,
BiCGStab for example.

The convergence rate for Krylov iterative methods can be difficult to predict in general. Nonetheless, some
qualitative criteria for the spectrum of an operator (matrix) M that can lead to rapid iterative convergence are
that the eigenvalues are bounded away from zero, as tightly clustered as possible, and preferably close to
unity. If an operator does not have these characteristics, a good preconditioner will have the effect of cluster-
ing the eigenvalues and moving them away from zero and towards unity. A precise description of how these
very loose criteria result in good convergence rates for GMRES, in particular, can be found in Ref. [5].

3. The thermal radiation multigroup diffusion equations

The equations of multigroup thermal radiation diffusion can be written as follows:
1

c

o/g

ot
� ~r � Dg

~r/g þ ra;g/g ¼ ra;g4pBgðT Þ; g ¼ 1;G; ð2Þ
and
Cv
oT
ot
¼
XG

g¼1

ra;g½/g � 4pBgðT Þ�; ð3Þ
where /gð~rÞ is the angularly integrated radiation intensity for group g, T ð~rÞ is the material temperature, c is the
speed of light, Dgð~r; T Þ is the diffusion coefficient for group g, ra;gð~r; T Þ is the macroscopic absorption cross-
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section for group g, Cvð~r; T Þ is the material heat capacity, and Bg(T) is the Planck function integrated over
group g:
BgðT Þ ¼
Z

Dg

2E3

h3c2
exp

E
kT

� �
� 1

� ��1

dE; ð4Þ
where h is Planck’s constant and k is Boltzmann’s constant. The standard definition for the diffusion coeffi-
cient is
Dg ¼
1

3rt;g
; ð5Þ
where rt,g denotes the total macroscopic cross-section (absorption plus Thompson scattering). Linearizing
Eqs. (2) and (3) about an arbitrary temperature, T*, and discretizing them in time over the interval

tn�1
2; tnþ1

2

h i
using the backward Euler method, we obtain the following multigroup diffusion equations:
� ~r � D�g ~r/g þ r�s;g/g � mvg

XG

k¼1

r�a;k/k ¼ ng; g ¼ 1;G; ð6Þ
where:
r�s;g ¼ r�a;g þ s; ð7aÞ

s ¼ 1

cDtn
; ð7bÞ

m ¼
PG

g¼1r
�
a;g4p

oB�g
oT

C�v
Dtn þ

PG
g¼1r

�
a;g4p

oB�g
oT

; ð7cÞ

vg ¼
r�a;g4p

oB�g
oTPG

k¼1r
�
a;k4p

oB�k
oT

; ð7dÞ

ng ¼ 4pr�a;gB�g þ s/n�1=2
g � mvg

XG

k¼1

r�a;k4pB�k þ
C�v
Dtn
ðT n�1=2 � T �Þ

" #
; ð7eÞ
with the material temperature given by
T ¼ T � þ
PG

g¼1r
�
a;kð/g � 4pB�gÞ þ

C�v
Dtn ðT

n�1=2 � T �Þ
C�v
Dtn þ

PG
g¼1r

�
a;g4p

oB�g
oT

: ð8Þ
Note that a superscript ‘‘*’’ denotes evaluation at T*, and that the time index nþ 1
2

has been suppressed in Eqs.
(6)–(8). The temperatures can be locally obtained once the multigroup diffusion equations are solved. Thus we
focus on solving Eq. (6). We generally lag the nonlinearities in the material properties by setting T* = Tn.
However, the nonlinearities can be consistently converged if desired by putting a non-linear iteration loop
around the linearized solution of these equations.

4. Linear multifrequency-grey acceleration

The traditional method for solving the multigroup diffusion equation is source iteration. Denoting the iter-
ation index by ‘, this iteration can be represented as follows:
� ~r � Dg
~r/‘þ1

g þ r�s;g/
‘þ1
g ¼ mvgf ‘ þ ng; ð9Þ
where
f ‘ ¼
XG

k¼1

r�a;k/
‘
k: ð10Þ
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Lacking knowledge of a better initial guess, f 0 is generally computed using the intensities at the beginning of
the time step. Note that if the absorption rate f is known, the process converges in one iteration. Thus the
convergence rate of this iteration process is determined by the rate at which errors in the absorption rate
are attenuated. When m � 1, this iteration process can converge arbitrarily slowly. This is known as the strong
material–radiation coupling limit and is physically characterized by large absorption and small heat capacity.
One can always make this iteration process rapidly convergent by taking a sufficiently small time step, but this
generally requires time steps much smaller than the characteristic time scale of the problem. Hence it is not an
effective strategy. The LMFGA technique accelerates the convergence of this outer iteration process. In par-
ticular, it can be represented as follows:
� ~r � Dg
~r/‘þ1

2
g þ r�s;g/

‘þ1
2

g ¼ mvgf ‘ þ ng; ð11aÞ

� ~r � hDi ~rdUþ ½hraið1� mÞ þ s�dU ¼ m f ‘þ
1
2 � f ‘

� �
; ð11bÞ

f ‘þ1 ¼ f ‘þ
1
2 þ hraidU: ð11cÞ
where
hDi ¼
XG

g¼1

1g

3r�a;g
; ð12Þ

hrai ¼
XG

g¼1

r�a;g1g; ð13Þ

1g ¼
vg

r�s;gPG
k¼1

vk
r�

s;k

: ð14Þ
The principle behind this method is fully explained in Ref. [1]. A brief description follows. A one-dimensional
Fourier analysis for a homogeneous infinite-medium can be performed that is based upon a decomposition of
the errors in f into Fourier modes, each having a spatial dependence of the form exp(jkx), where j ¼

ffiffiffiffiffiffiffi
�1
p

, k is
any real number, and x is the spatial variable. Note that small values of k correspond to slowly varying errors
while large values of k correspond to rapidly varying errors. The analysis indicates that the outer source iter-
ation at step ‘þ 1

2
, defined by Eq. (11a), strongly attenuates error modes of f with large values of jkj (rapidly

varying errors) and weakly attenuates those with small values of jkj (slowly varying errors). An exact multi-
group diffusion equation can be written for the additive errors in the multigroup intensities at iteration step
‘þ 1

2
, and the exact additive error in the absorption rate can be directly calculated from these intensity errors.

However, this exact multigroup error equation is no easier to solve than the original equation, so solving it is
not a viable strategy. Instead one substitutes a low-rank approximation for the exact equation that is reason-
ably easy to solve with the intent that it be accurate for modes with k � 0. The Fourier analysis shows that the
errors in the intensity take on a specific energy shape in the limit as k! 0. By assuming that the solution to the
exact error equation is the product of this energy shape modulated by a purely space-dependent function, one
can derive a grey equation for the error in the energy-integrated intensity that is exact in the limit as k! 0.
This grey diffusion equation for the additive error in the energy-integrated intensity is given in Eq. (11b), with
the normalized energy shape function given by Eq. (14). Once the error in the integrated intensity has been
estimated from a solution of the approximate grey equation, the corresponding error in the absorption rate
is calculated from the error in the energy-integrated intensity and added to the absorption rate iterate at step
‘þ 1

2
, resulting in the ‘‘accelerated’’ absorption rate at step ‘ + 1. This entire process is performed in Eq. (11c).

Thus the grey diffusion equation enables the errors in the absorption rate to be perfectly attenuated in the limit
as k! 0. Nonetheless, one must be concerned about the effect of the grey diffusion approximation on the rap-
idly varying error components. The grey diffusion equation is of low rank and thus cannot be accurate for all
error components. If the grey diffusion equation were to sufficiently overestimate the rapidly varying errors, it
would cause the accelerated iteration process to diverge. Fortunately, the grey diffusion approximation grossly
underestimates the rapidly varying errors and thus does no harm. The overall result for the idealized homo-
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geneous infinite-medium problem is a rapidly convergent iteration process that almost perfectly attenuates
both very slowly and very rapidly varying errors, and strongly attenuates errors with an intermediate
variation.

Computational experience indicates that in real one-dimensional calculations, this method is uncondition-
ally effective. However, as previously noted, it has recently been found that this method can significantly
degrade in multidimensional problems with large discontinuities in material properties. The multifrequency-
grey acceleration technique can be interpreted as a two-grid method with the grey-diffusion operator playing
the role of the ‘‘coarse-grid’’ operator. It is well known within the computational mathematics community that
multigrid methods are far more robust when recast as preconditioned Krylov methods. Indeed, as previously
noted, the DSA scheme for the transport equation (a two-grid diffusion-based method) becomes ineffective in
multidimensional problems with large discontinuities in material properties, but when recast as a precondi-
tioned Krylov method has been has been observed to remain effective under all conditions [3]. As previously
noted, this is our motivation for recasting the LMFGA method as a preconditioned Krylov method.

5. A preconditioned Krylov method

In this section we derive a preconditioned Krylov method for the multigroup radiative diffusion equations.
We first derive an equation for the absorption rate f. The action of the operator associated with this equation
requires the same set of independent one group diffusion solutions required by a source iteration. We then
derive a diffusion-based preconditioner that is closely related to the diffusion operator used in the LMFGA
method to estimate the intensity errors at step ‘þ 1

2
.

5.1. The absorption rate equation

We choose not to directly solve Eq. (6) with a Krylov method. Rather, we solve an equation that has the
absorption rate f as its unknown. Once the absorption rate has been calculated, the multigroup intensities can
be obtained by solving an independent set of one group diffusion equations:
� ~r � Dg
~r/g þ r�s;g/g ¼ mvgf þ ng; g ¼ 1;G: ð15Þ
We assume that an efficient method exists for solving such a system. Obviously, this assumption is also re-
quired for the LMFGA method because the basic unaccelerated iteration scheme requires the solution of
an equivalent system as illustrated by Eq. (11a).

We now proceed with the derivation of an equation for the absorption rate. Let us first rewrite Eq. (6) in
operator form as follows:
Ag/g ¼ mvgf þ ng; g ¼ 1;G; ð16Þ
where
Ag � � ~r � Dg
~rþ r�s;g: ð16aÞ
Solving Eq. (16) for /g, we get
/g ¼ A�1
g ½mvgf þ ng�; g ¼ 1;G: ð17Þ
Multiplying Eq. (17) by r�a;g and summing over all groups, we obtain:
f ¼
XG

g¼1

r�a;gA�1
g ½mvgf þ ng�: ð18Þ
Moving all terms containing f to the left side of Eq. (18), we obtain the desired equation for the absorption
rate:
Bf ¼
XG

g¼1

r�a;gA�1
g ng; ð19Þ
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where
B ¼ I�
XG

g¼1

r�a;gA�1
g mvg

" #
; ð19aÞ
and I denotes the identity operator. Eq. (19) is solved via a Krylov method rather than Eq. (6) because this
strategy can require far less memory. Assuming one spatial unknown per group per cell, Eq. (6) has a solu-
tion vector dimension equal to the number of spatial cells times the number of groups; but Eq. (19) has a
solution vector dimension equal to the number of spatial cells. Furthermore, Eq. (19) has a much more
compact spectrum than Eq. (6). In particular, under the assumption of an infinite homogeneous medium,
it can be shown that the eigenvalues of the operator associated with Eq. (18) are real, positive, and lie
in the open interval (0,1). For instance, let us assume an infinite homogeneous medium and a one-dimen-
sional Fourier dependence for f:
f ðxÞ ¼ f0 exp jkx: ð20Þ

Applying the operator B to f, we obtain
Bf ¼ I�
XG

g¼1

r�a;gmvg

Dgk
2 þ r�a;g þ s

" #
f ¼ xðkÞf ; ð21Þ
where
xðkÞ ¼
XG

g¼1

vg

Dgk
2 þ r�a;gð1� mÞ þ s

Dgk
2 þ r�a;g þ s

: ð22Þ
Note that f is an eigenfunction of B with eigenvalue x(k). Assuming a nonzero and bounded time step, it can
be seen from Eq. (7c) that m has a greatest lower bound of zero and a least upper bound of unity. Under the
same assumptions it can be seen from Eq. (7d) that the sum over g of vg is unity. Considering this information,
it is not difficult to see that x(k) has a greatest lower bound of zero and a least upper bound of unity. Small
eigenvalues correspond to low frequency modes, while eigenvalues near unity correspond to high frequency
modes. This spectrum is much more compact than that associated with Eq. (6), which not only has real
and positive eigenvalues near zero, but also has real and positive eigenvalues of arbitrarily large magnitude.
Even if we assume a symmetric positive definite (SPD) discretization for each one group diffusion operator
associated with B, it is clear that B is not self-adjoint with space-dependent material properties. It is desirable
to use the conjugate gradient Krylov method [4] whenever possible. However, this method is limited to sym-
metric positive definite systems. Thus we cannot use the CG method to solve Eq. (19) for the absorption rate.
However, this is not necessarily a significant disadvantage, because the CG method can still be used to perform
the group-dependent diffusion solutions required to form the action of B, and to calculate the angularly inte-
grated intensities using Eq. (15) after the absorption rate has been calculated. Note from Eqs. (9) and (19) that
the steps required to form the action of the operator associated with Eq. (19) are identical to that required to
perform a source iteration.

5.2. The preconditioner for multigroup diffusion

We next derive the preconditioner for the operator B. The first step in the derivation is to decompose the
solution to Eq. (6) into two components, /ð0Þg and /ð1Þg , where
/g ¼ /ð0Þg þ /ð1Þg ; g ¼ 1;G: ð23Þ
The equation satisfied by /ð0Þg is
Ag/
ð0Þ
g ¼ ng; g ¼ 1;G; ð24Þ
and the equation satisfied by /ð1Þg is
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Ag/
ð1Þ
g � mvg

XG

k¼1

r�a;k/
ð1Þ
k ¼ mvg

XG

k¼1

r�a;k/
ð0Þ
k ; g ¼ 1;G: ð25Þ
Solving Eq. (24) for /ð0Þg , we obtain
/ð0Þg ¼ A�1
g ng; g ¼ 1;G: ð26Þ
Substituting from Eq. (26) into Eq. (25), we get
Ag/
ð1Þ
g � mvg

XG

k¼1

r�a;k/
ð1Þ
k ¼ mvg

XG

k¼1

r�a;kA�1
k nk; g ¼ 1;G: ð27Þ
We next define a grey approximation to Eq. (27) that is accurate when /g is slowly varying in space. Applying
A�1

g to Eq. (27) from the left, we obtain
/ð1Þg ¼ A�1
g mvg

XG

k¼1

r�a;k½/
ð1Þ
k þ A�1

k nk�; g ¼ 1;G: ð28Þ
It is easily seen from Eq. (28) that /ð1Þg has a group-dependent shape proportional to A�1
g vg. Recalling Eqs.

(16a) and (20), we find that
A�1
g vg �

vg

Dgk
2 þ r�s;g

: ð29Þ
Thus in the limit as k! 0, the normalized shape of /ð1Þg is given by
1g ¼
vg

r�s;gPG
k¼1

vk
r�

s;k

: ð30Þ
Note from Eq. (14) that this shape is identical to that of the weakly attenuated intensity errors associated with
the source iteration process. We next assume this shape for /ð1Þg . In particular, we assume that
/ð1Þg ¼ 1gU
ð1Þ; ð31Þ
where U(1) is a space-dependent modulation function corresponding to the energy-integrated intensity. Substi-
tuting from Eq. (31) into Eq. (27), and summing over all groups, we obtain the following grey drift-diffusion
approximation:
� ~r � hDi ~rUð1Þ � ~r � h~DiUð1Þ þ ½hraið1� mÞ þ s�Uð1Þ ¼ m
XG

k¼1

r�a;kA�1
k nk; ð32Þ
where
hDi ¼
XG

g¼1

Dg1g; ð32aÞ

h~Di ¼
XG

g¼1

Dg
~r1g; ð32bÞ
and
hrai ¼
XG

g¼1

r�a;g1g; ð32cÞ
For reasons that are explained later, we drop the drift term from Eq. (32) to obtain
HUð1Þ ¼ m
XG

k¼1

r�a;kA�1
k nk; ð33Þ
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where
H � � ~r � hDi ~rþ ½hraið1� mÞ þ s�: ð33aÞ

Note from Eqs. (11b) and (33a) that this grey diffusion operator is identical to that associated with the
LMFGA method. In early 1D versions of the multifrequency-grey method, the drift term was retained because
the resulting drift-diffusion equation could be easily solved using direct techniques. However, when the meth-
od was applied in multidimensions, the drift term was dropped because doing so did not seem to significantly
affect the convergence rate in 1D calculations and iterative solution techniques for the diffusion equation were
significantly less costly than those for the drift-diffusion equation. This remains true, though to perhaps a les-
ser extent. Hence we follow what is now standard practice and drop the drift term. Solving Eq. (33) for U(1), we
obtain
Uð1Þ ¼ H�1m
XG

k¼1

r�a;kA�1
k nk: ð34Þ
Recognizing that the grey absorption rate is given by Æra æU, we manipulate Eq. (34) to yield the first compo-
nent of the absorption rate:
f ð1Þ ¼ hraiH�1m
XG

k¼1

r�a;kA�1
k nk: ð35Þ
Following Eq. (24), the zero’th component of the absorption rate is rigorously given as follows:
f ð0Þ ¼
XG

g¼1

r�a;gA�1
g ng: ð36Þ
Adding Eqs. (35) and (36), we obtain the total absorption rate with the zero’th component computed exactly,
and the first component computed approximately via the grey approximation:
f ¼ ðIþ hraiH�1mÞ
XG

g¼1

r�a;gA�1
g ng: ð37Þ
Let us next solve Eq. (19) for the absorption rate:
f ¼ B�1
XG

g¼1

r�a;gA�1
g ng: ð38Þ
Comparing Eqs. (37) and (38), it is clear that
ðIþ hraiH�1mÞ � B�1: ð39Þ

Thus our preconditioner is
C � ðIþ hraiH�1mÞ; ð40Þ

and our preconditioned equation is
CBf ¼ C
XG

g¼1

r�a;gA�1
g ng: ð41Þ
Assuming an infinite homogeneous medium and the Fourier spatial dependence assumed in Eq. (20), it is eas-
ily shown that
CB ¼ IþOðk2Þ: ð42Þ

Remembering that small values of k correspond to the eigenfunctions of B with the smallest eigenvalues, it
follows that C will move the smallest eigenvalues away from zero to essentially unity. We are concerned with
the eigenfunctions of B having the largest eigenvalues since the preconditioner cannot be exactly equal to the
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inverse of B for all of its eigenfunctions. In analogy with the behavior of the grey diffusion approximation in
the LMFGA method, the inverse grey diffusion operator in C grossly underestimates the eigenvalues of B that
are large. They are in fact so underestimated that the identity term in C dominates the diffusion term with the
result that the preconditioner is effectively just the identity. Thus the overall effect of the preconditioner is
ideal: it moves the smallest eigenvalues essentially to unity and leaves the largest eigenvalues alone. While this
is guaranteed only for an infinite homogeneous medium, it nonetheless suggests that C will be a very effective
preconditioner for the general case. The properties of the grey diffusion operator that cause degradation in the
classic LMFGA method can possibly generate some eigenvalues in the preconditioned operator that are great-
er than the maximum value of unity associated with B. However, we conjecture that this effect will have a
small adverse effect on the convergence of CB relative to B. The movement of the smallest eigenvalues away
from zero will likely have much greater impact than any increase in the largest eigenvalues, resulting in a pre-
conditioner that is very effective overall. We later provide computational results that give insight into the spec-
trum of the preconditioned operator.

Even if we assume an SPD diffusion discretization, C is not SPD with spatially dependent material prop-
erties. As previously noted, B is also not SPD with spatially dependent material properties. Thus, unless there
is some symmetrization process of which we are currently not aware, the preconditioned system CB will not be
SPD, which implies that Eq. (41) cannot be solved using the CG method. Nonetheless, all of the diffusion solu-
tions associated with forming the action of CB can be performed using the CG method.

Since the action of the operator B requires the inversion of an independent set of one-group diffusion equa-
tions, a nested Krylov strategy is required to solve Eq. (41). By this we mean that each Krylov iteration for Eq.
(41) requires the solution of an independent set of one-group diffusion equations, each of which should ideally
be solved via a preconditioned CG method. To achieve the highest efficiency for nested calculations, while still
converging to the correct solution, the tolerance for the ‘‘inner’’ CG iterations could be relaxed as the ‘‘outer’’
Krylov iteration proceeds according to the strategy presented in Refs. [6,7].

6. Relating the LMFGA and LMFGK methods

In this section we demonstrate a simple relationship between the LMFGA and LMFGK methods. We
begin by re-expressing the LMFGA method in terms of operators previously defined for the LMFGK method.
In particular, we first solve Eq. (11a) for /‘þ1

2
g , and then use that expression to solve for f ‘þ

1
2:
f ‘þ
1
2 ¼ ðI� BÞf ‘ þ

XG

g¼1

r�a;gA�1
g ng; ð43Þ
where Ag and B are defined by Eqs. (16a) and (19a), respectively. Next we substitute from Eq. (43) into Eq.
(11b) to obtain
dU ¼ H�1m
XG

g¼1

r�a;gA�1
g ng � Bf ‘

 !
: ð44Þ
Finally, we substitute from Eqs. (43) and (44) into Eq. (11c), to obtain a single expression that defines a com-
plete LMFGA iteration for the absorption rate:
f ‘þ1 ¼ ðI� CBÞf ‘ þ C
XG

g¼1

r�a;gA�1
g ng; ð45Þ
where C is defined by Eq. (40). Comparing Eq. (45) with Eq. (41), one finds that the LMFGA method is simply
Richardson iteration [4] applied to the preconditioned equation that is solved in the LMFGK method. Rich-
ardson iteration applied to a general linear system of the form given in Eq. (1) is
~x‘þ1 ¼ ðI�MÞ~x‘ þ~b: ð46Þ

Thus, as one would expect, the two methods are closely and simply related. They each represent a method for
solving the preconditioned equation given by Eq. (41). In the case of the LMFGA method, this equation is
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solved via Richardson iteration; and in the case of the LFMGK method, this equation is solved via a standard
Krylov method.

7. The discretized equations

To test our LMFK method, we use Palmer’s node-centered polygonal-mesh discretization of the diffusion
operator in two-dimensional r–z geometry [8] in conjunction with a discontinuous representation for the mate-
rial temperatures. The radiation intensities are located at nodes, but the temperatures are located at ‘‘corners’’.
A corner is uniquely associated with both a node and a cell that subtends that node. Every corner coincides
with a node, but there is a separate corner for each cell that subtends the node. Corners are illustrated for a
polygonal mesh in Fig. 1. Thus the material temperatures are also located at the nodes, but there is a separate
node temperature for each cell that subtends the node. Consequently, material temperature is said to be dis-
continuous at each node. Since there is only one set of multigroup radiation intensities per node, the radiation
intensity treatment is said to be continuous. A continuous temperature treatment would simply have one tem-
perature at each node. Since material properties are cell-centered, the discontinuous temperature treatment
yields separate temperatures in each material, which is highly desirable in radiation-hydrodynamics calcula-
tions. The hybrid node-centered discretization that we use with continuous radiation intensities and discontin-
uous temperatures is simpler and easier to solve than a fully cell-centered discretization, but it is nonetheless
compatible with standard cell-centered and staggered-mesh hydrodynamics discretizations. Although we do
not consider radiation-hydrodynamics calculations in this study, such calculations are a major application
for multigroup thermal radiation diffusion algorithms. Thus it is appropriate to test our LMFGK method
using a multigroup thermal radiation diffusion discretization that is practical for radiation-hydrodynamics
calculations.

Before describing our radiation/temperature discretization for general polygonal meshes, we first consider a
simple 1D slab-geometry mesh. The center, node, and corner indexing for such a mesh is shown in Fig. 2. Let
hi denote the width of cell i. The effective width associated with corner i; iþ 1

2
is
Fig. 1.

Fig. 2.
and co
hi;iþ1
2
¼ hi

2
; ð47Þ
and the effective width associated with node iþ 1
2

is the sum of the associated corner widths
Corner

Node

Corner

Corner

Illustration of corners and nodes. Each corner coincides with a node but is uniquely associated with cell that subtends that node.

i i+1

i–1/2 i+1/2 i+3/2

Center, node, and corner indexing in 1D slab geometry. The cell centers carry integer indices, the nodes carry half-integer indices,
rners carry both cell and node indices.
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hiþ1
2
¼ hiþ1;iþ1

2
þ hi;iþ1

2
¼ hiþ1

2
þ hi

2
: ð48Þ
Many of our discrete equations contain node-centered quantities obtained by volume-weighted averaging of
corner-centered quantities. The normalized weight associated with corner i; iþ 1

2
is
wi;iþ1
2
¼

hi;iþ1
2

hiþ1
2

¼ hi

hiþ1 þ hi
: ð49Þ
It is often convenient for our purposes to collectively apply an index to a group of terms enclosed within
parentheses, brackets, etc. This implies that all the enclosed quantities individually carry that index unless
otherwise indicated.

On the mesh interior, the discrete analog of Eq. (16) for the intensity in group g at node iþ 1
2

can be
expressed as follows:
ðAg/gÞiþ1
2
¼ ðmvgf þ ngÞiþ1;iþ1

2
wiþ1;iþ1

2
þ ðmvgf þ ngÞi;iþ1

2
wi;iþ1

2

h i
hiþ1

2
; ð50Þ
where
ðAg/gÞiþ1
2
¼ �Dg;iþ1

hiþ1

/g;iþ3
2
� /g;iþ1

2

� �
þ Dg;i;

hi
/g;iþ1

2
� /g;i�1

2

� �
þ r�s;g;iþ1

2
/g;iþ1

2
hiþ1

2
; ð50aÞ

fi;iþ1
2
¼
XG

k¼1

r�a;k;iþ1;iþ1
2
/g;iþ1

2
; ð50bÞ

r�s;g;iþ1
2
¼ r�s;g;iþ1;iþ1

2
wiþ1;iþ1

2
þ r�s;g;i;iþ1

2
wi;iþ1

2
: ð50cÞ
The diffusion coefficient Dg,i,, which appears in Eq. (50a), is cell-centered and evaluated for the material in cell
i at the cell-centered temperature,
T �i ¼
T �i;iþ1

2

� �4

þ T �i;i�1
2

� �4
� �1

4

2
: ð50dÞ
The cross-section, r�
a;g;i;iþ1

2
, which appears in Eq. (50b), is corner-centered and evaluated for the material in cell

i at the corner temperature, T �i;iþ1
2
. The cross-section, r�

s;g;i;iþ1
2
, which appears in Eq. (50c), is constructed from

r�
a;g;i;iþ1

2
in accordance with Eqs. (7a) and (7b). The quantities, mi;iþ1

2
and vg;i;iþ1

2
, which appear in Eq. (50), are

corner-centered and constructed from other corner-centered quantities in accordance with Eqs. (7c) and

(7d). The quantity, ng;i;iþ1
2
, which appears in Eq. (50), is corner-centered and constructed from other corner-

centered quantities and one node-centered quantity in accordance with Eq. (7e). This node-centered quantity

corresponds to s/
n�1

2

g;iþ1
2

.
The diffusion operator appearing in Eq. (50) and defined by Eq. (50a) is node-centered, but the node-cen-

tered cross-section appearing in that operator and defined in Eq. (50c) is a volume-weighted average of
corner-centered cross-sections. Similarly, the right side of Eq. (50) is node-centered but formed from a vol-
ume-weighted average of corner-centered quantities.

The discrete analog of Eq. (8) for the temperature at corner i; iþ 1
2

is given by
T i;iþ1
2
¼ T �i;iþ1

2
þ
PG

g¼1r
�
a;g;i;iþ1

2
/g;iþ1

2
� 4pB�g;i;iþ1

2

� �
þ

C�
v;i;iþ1

2

Dtn T
n�1

2

i;iþ1
2

� T �i;iþ1
2

� �
C�

v;i;iþ1
2

Dtn þ
PG

g¼1r
�
a;g;i;iþ1

2

4poB�

oT g;i;iþ1
2

; ð51Þ
where C�v;i;iþ1
2

denotes the heat capacity for the material in cell i evaluated at the corner-centered temperature,

T i;iþ1
2
, B�g;i;iþ1

2
denotes the Planck function evaluated at the corner-centered temperature, T i;iþ1

2
, and oB�

oT g;i;iþ1
2

de-

notes the temperature-derivative of the Planck function evaluated at the corner-centered temperature, T i;iþ1
2
.
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Symbolically inverting the discrete diffusion operator in Eq. (50), we obtain a discrete analog of Eq.
(17):
/g;iþ1
2
¼ A�1

g ðmvgf þ ngÞiþ1;iþ1
2
wiþ1;iþ1

2
þ ðmvgf þ ngÞi;iþ1

2
wi;iþ1

2

h i
hiþ1

2
: ð52Þ
Multiplying Eq. (52) by r�
a;g;i;iþ1

2
and summing over all groups, we obtain the discrete analog of Eq. (18):
fi;iþ1
2
¼
XG

g¼1

r�a;g;i;iþ1
2
A�1

g ðmvgf þ ngÞiþ1;iþ1
2
wiþ1;iþ1

2
þ ðmvgf þ ngÞi;iþ1

2
wi;iþ1

2

h i
hiþ1

2
; ð53Þ
Note that this is an equation for the absorption rate at corner i; iþ 1
2
. Thus the absorption-rate equation is

corner-centered even though the radiation intensity equation is node-centered. This occurs because the tem-
peratures are corner-centered rather than node-centered.

Assuming a discrete decomposition analogous to that given in Eqs. (23) and (24), the discrete analog of Eq.
(28) is
/ð1Þ
g;iþ1

2

¼ A�1
g mvg f ð1Þ þ

XG

k¼1

r�a;kA�1
k nk

 !" #
iþ1;iþ1

2

wiþ1;iþ1
2
þ mvg f ð1Þ þ

XG

k¼1

r�a;kA�1
k nk

 !" #
i;iþ1

2

wi;iþ1
2

8<
:

9=
;hiþ1

2
;

ð54Þ
where
f ð1Þ ¼
XG

k¼1

r�a;k/
ð1Þ
k : ð54aÞ
A difficulty arises when trying to obtain an energy shape function for the grey diffusion equation from Eq. (54)
because the solution to Eq. (54) does not assume a unique shape when the solution is spatially constant. In
particular, setting the spatial derivative terms to zero in A�1

g , Eq. (54) becomes
/ð1Þ
g;iþ1

2

¼ 1

r�
s;g;iþ1

2

mvg f ð1Þ þ
XG

k¼1

r�a;knk

r�
s;k;iþ1

2

 !" #
iþ1;iþ1

2

wiþ1;iþ1
2
þ mvg f ð1Þ þ

XG

k¼1

r�a;knk

r�
s;k;iþ1

2

 !" #
i;iþ1

2

wi;iþ1
2

8<
:

9=
;: ð55Þ
There is a separate contribution to /ð1Þ
g;iþ1

2

in Eq. (55) from each corner associated with node iþ 1
2
, and each of

these contributions has a unique shape. Thus the overall shape of /ð1Þ
g;iþ1

2

depends upon the relative magnitudes
of these contributions. The solution would have a unique shape if the temperatures were node-centered. Even
though a unique shape is not assumed by the solution, a grey equation nonetheless can be obtained given
node-centered shape functions. Our procedure for obtaining shape functions is not unique. We simply made
a reasonable choice and found that it worked well.

To obtain node-centered shape functions, we first define unnormalized corner-centered shape functions. In
particular, the unnormalized shape function at corner i; iþ 1

2
is defined as follows:
ag;i;iþ1
2
¼

mi;iþ1
2
vg;i;iþ1

2

r�
s;g;iþ1

2

: ð56Þ
The unnormalized shape function at node iþ 1
2

is obtained via a volume-weighted average of the unnormalized
corner shape functions:
ag;iþ1
2
¼ ag;iþ1;iþ1

2
wiþ1;iþ1

2
þ ag;i;iþ1

2
wi;iþ1

2
: ð57Þ
Thus the normalized shape function at node iþ 1
2

is given by
1iþ1
2
¼

ag;iþ1
2PG

k¼1ak;iþ1
2

: ð58Þ
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The generation of the discrete grey diffusion equation begins by multiplying Eq. (54) from the left with Ag:
ðAg/
ð1ÞÞg;iþ1

2
� ðmvgf ð1ÞÞiþ1;iþ1

2
wiþ1;iþ1

2
þ ðmvgf ð1ÞÞi;iþ1

2
wiþ1;iþ1

2

h i
hiþ1

2

¼ mvg

XG

k¼1

r�a;kA�1
k nk

 !
iþ1;iþ1

2

wiþ1;iþ1
2
þ mvg

XG

k¼1

r�a;kA�1
k nk

 !
i;iþ1

2

wi;iþ1
2

2
4

3
5hiþ1

2
: ð59Þ
We directly use the node-centered shape functions for the absorptive components of A and for the second term
in brackets on the left side of Eq. (59). The diffusion components of A require some care to avoid an effective
drift term. More specifically, each difference of intensities associated with a single cell-centered diffusion coef-
ficient must be averaged with a single shape function. These cell-centered shape functions are obtained simply
by linearly averaging the two node-centered shape functions associated with each cell:
1g;i ¼
1

2
1i�1

2
þ 1iþ1

2

� �
: ð60Þ
The following discrete grey diffusion equation is obtained from the averaging process:
ðHUð1ÞÞiþ1
2
¼ m

XG

k¼1

r�a;kA�1
k nk

 !
iþ1;iþ1

2

wiþ1;iþ1
2
þ m

XG

k¼1

r�a;kA�1
k nk

 !
i;iþ1

2

wi;iþ1
2

2
4

3
5hiþ1

2
; ð61Þ
where
ðHUð1ÞÞiþ1
2
¼ �hDiþ1i

hiþ1

Uð1Þ
iþ3

2

� Uð1Þ
iþ1

2

� �
þ hDii

hi
Uð1Þ

iþ1
2

� Uð1Þ
i�1

2

� �
þ ½hraið1� mÞ�iþ1

2
þ s

n o
Uð1Þ

iþ1
2

hiþ1
2
; ð61aÞ

hDii ¼
XG

g¼1

Dg;i1g;i; ð61bÞ

½hraið1� mÞ�iþ1
2
¼ ½hraið1� mÞ�iþ1;iþ1

2
wiþ1;iþ1

2
þ ½hraið1� mÞ�i;iþ1

2
wi;iþ1

2
; ð61cÞ

hraii;iþ1
2
¼
XG

g¼1

r�a;g;i;iþ1
2
1g;iþ1

2
: ð61dÞ
Like the discrete multigroup diffusion operator defined by Eq. (50a), the discrete grey diffusion equation de-
fined by Eq. (61a) is node-centered. The grey equation for the absorption rate is obtained by first symbolically
inverting the operator on the left side of Eq. (61a), and then multiplying that equation by hraii;iþ1

2
:

f ð1Þ
i;iþ1

2

¼ hraii;iþ1
2
H�1 m

XG

k¼1

r�a;kA�1
k nk

 !
iþ1;iþ1

2

wiþ1;iþ1
2
þ m

XG

k¼1

r�a;kA�1
k nk

 !
i;iþ1

2

wi;iþ1
2

2
4

3
5hiþ1

2
: ð62Þ
Note that the grey equation for the absorption rate given in Eq. (62), like the multigroup equation for the
absorption rate given in Eq. (53), is corner-centered.

The procedure for generating the polygonal-mesh equations is almost completely analogous to that used to
generate the slab-geometry equations. Only a few aspects of the procedure require explicit discussion. As pre-
viously noted, the polygonal diffusion discretization is node-centered [8]. As in the slab-geometry case, all
terms relating to absorption and emission are treated using a one-point or diagonal approximation. Let us
consider a node on the mesh interior, and denote it as ‘‘node a’’. The diffusion stencil couples the intensity
at node a to each intensity located at a node that shares a polygon with node a. This is illustrated in
Fig. 3. Each polygon is decomposed into triangles as shown in Fig. 4. Each triangle is associated with three
intensities: two nodal intensities and an intensity at the center of the polygon. The center intensity is not an
independent unknown but rather is an average of the nodal intensities associated with the polygon. Each tri-
angle is also associated with a gradient computed from the three triangular intensities. While there is only one
material in each polygon, there is a separate diffusion coefficient for each triangle. This diffusion coefficient is
analogous to the cell-centered coefficient in slab geometry, but is not really ‘‘centered’’ in the triangle. It is



Fig. 4. The triangular decomposition associated with each polygon.

Node "a" 

Fig. 3. The polygonal diffusion stencil. All of the nodes associated with the diffusion stencil for node ‘‘a’’ are shown. Every node that
shares a polygon with node ‘‘a’’ is in the stencil.
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evaluated in analogy with Eq. (50d) using the two corner temperatures associated with each triangle. Thus it
can be thought of as being located at the center of the outer edge of the triangle. The shape functions asso-
ciated with these two nodes are also averaged in analogy with Eq. (60) to obtain a unique shape function for
each triangle, and this shape function is used to generate a grey diffusion coefficient. While there are only two
corners per node in slab geometry, there can be an arbitrary number of corners per node on a polygonal mesh.
Corner-centered quantities are averaged onto the nodes using the same volume-weighted technique used in
slabs. Each corner is uniquely associated with two triangles, and each corner carries half of those triangular
volumes. Polygonal corner volumes are illustrated in Fig. 5. This concludes our description of the discrete
polygonal-mesh equations.
Corner

Corner Volume

Fig. 5. The volume associated with a polygonal corner.
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8. Calculations and results

Two sets of calculations in two-dimensional r � z geometry were performed to compare the LMFGA
and LMFGK methods. As elucidated in Section 6, both the LMFGA and LMFGK methods solve the
same preconditioned equation given in Eq. (41). Nonetheless, considerable effort was required to define
the specific steps used to execute each method so as to achieve as fair a comparison as possible. Thus
we next give full descriptions of the LMFGA and LMFGK algorithms that were used for the test
calculations.

To achieve a fair comparison, the same stopping criterion was used for both methods:
kR‘k2

kC
PG

g¼1r
�
a;gA�1

g ngk2

< �: ð63Þ
Here, k � � � k2 stands for the L2-norm, � is the convergence tolerance, and R‘ is the residual vector evaluated
with f ‘, the solution at the ‘th iteration:
R‘ ¼ C
XG

g¼1

r�a;gA�1
g ng � CBf ‘: ð64Þ
Note that the left side of Eq. (63) is the norm of the residual divided by the norm of the source vector.
It is evident from Eq. (45) that the residual vector R‘ for the LMFGA method is equal to f ‘+1 � f ‘; there-

fore, the LMFGA method can be expressed as follows:

Algorithm 1 (LMFGA algorithm).

(1) Compute the right-hand-side of Eq. (41).
(2) Set the initial guess as the solution of the zeroth iteration f 0.
(3) For ‘ ¼ 0; 1; . . . Do:

� Compute f ‘+1 by solving Eqs. (11a)–(11c).
� Set R‘ = f ‘+1 � f ‘.
� If the stopping criterion Eq. (63) is satisfied go to 5.
(4) EndDo
(5) Accept /‘þ1

2
g ¼ A�1

g ½mvgf ‘ þ ng� as the angularly integrated radiation intensity for group g (g = 1,G).

Since /‘þ1
2

g has been computed during the computation of f ‘+1, step 5 does not require any further com-
putation. Computing the right-hand-side of Eq. (41) and the computation of f ‘+1 in each iteration both
require the inverses of the operators Ag and H, defined in Eqs. (16a) and (33a), respectively; therefore, if
the iteration stops at the kth iteration, the algorithm above requires solving G + 1 diffusion equations
k + 2 times.

Without going into the details of the GMRES algorithm, the steps of the LMFGK method are as follows:

Algorithm 2 (LMFGK algorithm).

(1) Compute the right-hand-side of Eq. (41).
(2) Compute the initial residual vector R0 using the initial guess f 0.
(3) If the stopping criterion Eq. (63) is satisfied set ‘ to 0 and go to 7.
(4) Set v1 = R0/iR0i2 as the first vector of the Krylov space.
(5) For ‘ ¼ 1; 2; . . . Do :

� Compute w‘ = CB v‘ to extend the Krylov space.
� Compute iR‘i2 and f ‘ according to the GMRES algorithm.
� If the stopping criterion Eq. (63) is satisfied go to 7.
� If the dimension of the Krylov space reaches the maximum size:

Restart using f ‘ as the new initial guess and set v‘+1 = R‘/iR‘i2 as the first vector of the new Krylov
space.
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� Else:
Compute v‘+1 from w‘ according to the GMRES algorithm.

� Endif

(6) Enddo
(7) Compute /‘þ1

g ¼ A�1
g ½mvgf ‘ þ ng�, the angularly integrated radiation intensity for group g (g = 1,G).

In the LMFGK method, the inverses of the operators Ag and H are needed in the computations of w‘

for each iteration and the right-hand-side of Eq. (41). In addition, computation of /‘þ1
g in step (7) needs

the inverse of the operator Ag; therefore, if the iteration stops at the kth iteration, the algorithm above
requires solving the diffusion equations for G photon groups k + 3 times and the grey diffusion equation
k + 2 times.

The calculations used 10 photon groups with the following group boundaries (in units of keV): 0.0001,
0.000316, 0.001, 0.00316, 0.01, 0.0316, 0.1, 0.316, 1.0, 3.16, 10.0. Photons with energies less than 0.0001
keV or greater than 10.0 keV are ignored. The absorption cross-section for each group was the geometric-
mean of the opacities at the group boundaries evaluated with the following power-law formula:
ra;gðT ;EÞ ¼ 10:0 cm�1 q
g=cm3

� �
T

keV

� ��1=2 E
keV

� ��3

; ð65Þ
where T and E are material temperature and photon energy in units of keV, and q is the material density in
units of g/cm3. The diffusion coefficient for each group was
Dg ¼ min
1

3ra;g
;

/g

j ~r/gj

 !
; ð66Þ
evaluated at the beginning of each time step. This is a flux-limited coefficient that becomes equal to the stan-
dard diffusion coefficient in optically thick diffusive regions, but becomes smaller in optically thin regions to
prevent non-physically large radiation fluxes. The material had a constant specific heat of 0.05 jerks/keV/g.
The material temperatures were initially set to a constant value of 0.005 keV, and the radiation intensities were
initially set to a Planck distribution at the initial material temperaure.

The geometry of the test problems was a 7-cm long cylinder with a 1-cm radius. This geometry is illustrated
in Fig. 6. The spatial zoning of the cylinder follows:

(1) There are three regions.

(a) Region 1 is defined by r 2 [0.0,0.5] and z 2 [0.0,7.0].
(b) Region 2 is defined by r 2 [0.5,0.6] and z 2 [0.0,7.0].
(c) Region 3 is defined by r 2 [0.6,1.0] and z 2 [0.0,7.0].
(2) Regions 1 and 3 were tessellated with 0.1 cm by 0.1 cm square zones.
(3) Region 2 was tessellated with zones that were 0.1 cm wide in the z-direction and had varying widths in

the r-direction. In particular, the r-widths of the zones were chosen such that the r-width of each succes-
sive zone was 1.47392 times larger than that of the zone beneath it. Region 2 was tessellated with 10 such
geometrically expanding zones. The r-width of the first of these zones (the zone with a minimum radius
of 0.5 cm), was 1 · 10�3 cm.
Source

0 2 4 6 7

0.5

1

0

Region 2 
Region 1 

Region 3 

Z

R

531

Fig. 6. The basic problem geometry for all calculations. Region 2 has a width of 0.1 cm.
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The boundary conditions for the radiation follow:

(1) The following Marshak source boundary condition was applied on the left boundary subface defined by
z = 0.0 cm and r 6 0.5 cm:
Table
Comp

Dt (sh)

0.1

0.01

0.001
Dg
~r/g � n̂ ¼

4pBgðT sÞ � /g

2
; ð67Þ
where n̂ is the outward-directed unit vector normal to the boundary, Bg is the integrated Planck function
defined in Eq. (4), and Ts is a time-dependent source temperature. This source temperature had an initial
value of 0.05 keV, increased linearly to reach 0.5 keV in 2.0 sh, and remained at 0.5 keV thereafter.

(2) A vacuum boundary condition was applied on the right boundary face defined by z = 7.0 cm. A vacuum
boundary condition is a Marshak boundary condition defined in Eq. (67) with zero source temperature Ts.

(3) A reflecting boundary condition, ~r/g � n̂ ¼ 0, was applied on the rest of the boundaries.

The first set of calculations corresponds to a problem with strong discontinuities in material properties. The
material density of Region 1 was 0.01 g/cm3 and that of Regions 2 and 3 was 2.0 g/cm3. Each calculation
started at t = 0.0 sh and ran to a final time of 20 sh with a fixed time-step size. The time steps were varied
between calculations. Table 1 compares the LMFGA and LMFGK methods for three choices of time-step
sizes Dt (0.1 sh, 0.01 sh, and 0.001 sh). Three numbers are compared:

� The wall-clock run time per time step, averaged over all the time steps. The calculations ran on a dedicated
computing processor; therefore, the wall-clock time is very close to the CPU time.
� Number of iterations for solving the preconditioned equation Eq. (41) per time step, averaged over all the

time steps, therein after referred to as number of ‘‘outer’’ iterations.
� Sum of the numbers of iterations taken by the linear solver for all the diffusion equations within each time

step, averaged over all the time steps, therein after referred to as number of ‘‘inner’’ iterations.

The tolerance � in the outer iteration stopping criterion, Eq. (63), was set to 10�5 for this set of calculations,
and the maximum dimension of the Krylov space was set to 10. The diffusion equations associated with the
inner iterations were solved using the GMRES algorithm with an algebraic multigrid (AMG) preconditioner.
The GMRES algoithm was used rather than the conjugate-gradient algorithm because the polyhedral-mesh
diffusion discretization is non-symmetric. The iterations for each diffusion equation were terminated when
the L2 norm of the residual divided by the L2 norm of the source vector was less than 10�10.

It can be seen from Table 1 that LMFGK takes fewer ‘‘outer’’ iterations than LMFGA. This is expected
because GMRES should take no more iterations than Richardson iteration in solving the same set of linear
equations. As the time-step size Dt increases, the advantage of LMFGK becomes more significant. Note, how-
ever, that the ratio of the number of ‘‘inner’’ iterations to the number of ‘‘outer’’ iterations is significantly
smaller for LMFGA than for LMFGK. Consequently, the advantage of LMFGK in terms of the number
of ‘‘outer’’ iterations does not translate proportionally to shorter run-times. The reason for this behavior lies
in the difference in the right-hand-side of the diffusion equations. For LMFGA, the diffusion equation to be
solved for each group is Eq. (11a). In solving Eq. (11a), the solution of the previous iteration /l�ð1=2Þ

g is used as
an initial guess for the current solution /lþð1=2Þ

g . As the iteration proceeds, the initial guess becomes an
1
arisons for the variable-density calculations

Method Time (s) No. of ‘‘Outer’’ iterations No. of ‘‘Inner’’ iterations

LMFGK 1.553 7.98 1424.42
LMFGA 2.992 25.73 2929.14
LMFGK 0.848 3.55 668.40
LMFGA 0.986 8.07 785.00
LMFGK 0.450 1.26 260.32
LMFGA 0.417 1.56 190.12



J.E. Morel et al. / Journal of Computational Physics 227 (2007) 244–263 261
increasingly better approximation to the solution /lþð1=2Þ
g . In contrast, for the LFMGK method the operator B

defined in Eq. (19a) is applied to the vector v‘ each time the GMRES method extends its Krylov vector space
(see Algorithm 2). Since v‘ is orthogonal to the Krylov vector space of iteration (‘ � 1), there is no appropriate
initial guess for solving the diffusion equation associated with the computation of A�1

g mvgv‘. The significance of
this fact was not evident to us before performing this computational study. For the variable-density problem
with Dt = 0.1 sh the LMFGK method takes a factor of 3.2 fewer iterations than the LMFGA method, but is
only a factor of 1.9 faster than the LMFGA method. For Dt = 0.01 sh, the LMFGK method takes a factor of
2.3 fewer iterations than the LMFGA method, but is only a factor of 1.16 faster than the LMFGA method.
For Dt = 0.001 sh, the LMFGK method takes a factor of 1.24 fewer iterations than the LMFGA method, but
is actually a factor of 1.08 slower than the LMFGA method.

It is possible for LMFGK to achieve higher efficiency by relaxing the tolerance for the ‘‘inner’’ iterations
while the ‘‘outer’’ Krylov iteration proceeds according to the strategy presented in Refs. [6,7]. In the interest of
fairness, one would like to apply a similar strategy to the LMFGA method, but it is not clear that such a strat-
egy is valid for a traditional iteration technique since it was specifically developed for Krylov methods. Thus
we chose not to apply this strategy in this initial study, and used an inner iteration tolerance for both methods
that was quite small relative to the outer iteration tolerance. Inner versus outer iteration tolerances and
dynamic modification of these tolerances are clearly topics for future research.

The second set of calculations corresponds to a homogeneous problem. The material density was 2.0 g/cm3

in all regions. The tolerance � in the outer iteration stopping criterion, Eq. (63), was set to 10�4 for this set of
calculations. The remaining problem parameters were identical to those in the first set of calculations. The
comparisons are given in Table 2 for three time-step sizes, Dt (0.2 sh, 0.1 sh, and 0.01 sh).

As one would expect, the advantage of the LMFGK method relative to the LMFGA method is not as sig-
nificant for the homogeneous problem since the LMFGA method does not suffer the degradation associated
with highly inhomogeneous problems. Although the LMFGK method always requires fewer outer iterations
than the LMFGA method, the need for more inner iterations per outer iteration has a significant impact upon
the efficiency of the LMFGK method. For the uniform-density problem with Dt = 0.2 sh the LMFGK method
takes a factor of 1.8 fewer iterations than the LMFGA method, but is only a factor of 1.07 faster than the
LMFGA method. For Dt = 0.1 sh, the LMFGK method takes a factor of 1.6 fewer iterations than the
LMFGA method, but has the same run time as the LMFGA method. For Dt = 0.01 sh, the LMFGK method
takes about a factor of 1.12 fewer iterations than the LMFGA method, but is actually a factor of 1.1 slower

than the LMFGA method.
Even though only calculation-averaged iteration counts were given in Tables 1 and 2, it is important to rec-

ognize that iteration counts can vary significantly during a calculation. For instance, the outer iteration counts
for both methods are plotted in Fig. 7 as a function of the time-step number for Problem 1 with a time step of
0.1 sh. It can be seen from Fig. 7 that the iteration counts for each method not only vary over the course of the
calculation, but also vary relative to each other. For instance, the LMFGA method requires about five times
more iterations than the LMFGK method near the beginning of the calculation, but both methods rapidly
converge near the end. The latter effect is simply due to the fact that the solution is approaching steady-state
at the end of the calculation.

The degradation exhibited by the LMFGA method in strongly heterogeneous problems is highly problem-
dependent. Divergence of the LMFGA method has been observed in calculations at LLNL by one of the
authors (B. Yang) and others, but when divergence occurs, it generally occurs over only a few critical time
Table 2
Comparisons for the uniform-density calculations

Dt (sh) Method Time (s) No. of ‘‘Outer’’ iterations No. of ‘‘inner’’ iterations

0.2 LMFGK 0.601 3.41 455.71
LMFGA 0.646 6.14 472.31

0.1 LMFGK 0.561 2.83 403.83
LMFGA 0.561 4.57 376.99

0.01 LMFGK 0.425 1.228 249.49
LMFGA 0.388 1.375 180.97
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Fig. 7. Outer iteration counts as a function of time-step number for Problem 1 with the 0.1 sh time step.
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steps. Heuristic measures have been defined that seem to allow such calculations to continue to completion,
but the lack of robustness is clearly undesirable. We fully expect the LMFGK method to be far more robust
than the LMFGA method, but robustness cannot be reliably gauged with a few test problems. Indeed, years of
computational experience are required.

9. Conclusions and recommendations for future work

Our results indicate that the LMFGK method is indeed less sensitive to material inhomogeneities than the
LMFGA method. They further indicate that the LMFGK method can be expected to have comparable effi-
ciency at worst and significantly better efficiency at best relative to the LMFGA method. Thus we conclude
that the LMFGK method is a superior alternative to the LMFGA method. Nonetheless, the increased number
of inner iterations required per outer iteration with the LMFGK method clearly diminishes the impact of its
rapid outer iteration convergence rate. The strategy of using a convergence tolerance for the inner iterations
that changes as the outer iterations proceed clearly has the potential to significantly reduce the cost of the
inner iterations. In principle, this type of strategy should be applicable to both the LMFGK and LMGFA
methods. However, it is not clear that these methods will be equally amenable to this type of strategy. For
instance, the strategy described in Refs. [6,7] was specifically developed for Krylov methods. Thus the poten-
tial exists to significantly alter the relative efficiencies of the LMFGK and LMFGA methods. We intend to
address this issue in the near future.

A variant of the LMFGA method exists for multigroup thermal radiation transport calculations [9]. We are
presently investigating a corresponding LMFGK method. Interestingly, there are two very different options
for formulating such a method. Each has potential advantages and disadvantages relative to the other. We
are investigating both of them and intend to report our results in the near future.
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